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Introduction

I With new technologies come new ways of learning and teaching. The theory
of knowledge spaces [3] aims to benefits from computers power to improve
or propose a new way to assess knowledge of students based on a
mathematical structure named learning space. It has been implemented in
the ALEKS system in USA, and is studied within the ProFan project in
France, to which the PhD is attached. First, we explain learning spaces and
thesis objectives. Then, we stick to one problem for which we state main
ideas of existing results and current work.

Learning spaces with hands

Our main context: a group of students must master a topic at school.
I For each student, we want to reveal both her/his knowledge on the subject

and what he/she is ready to learn.
I The subject is divided in a group of small problems called items. The set of

items mastered by a student is its knowledge state. From this state we
know which items to teach next.

I Assumptions: a student can learn one item at a time (see augmentation),
the union of two (knowledge) states is a state too (see stability). The
collection of possible states is called a learning space.

I We can discover a learning space by asking queries to expert teachers (see
implications) of the form “if a student fails this item, will she/he fails this
one too?”.

PhD Objectives

1. representation: how do we store efficiently the information of the structure ?

2. modification: how can we update the learning space ?

Both those questions first motivate the theoretical study of the
mathematical structure hidden behind learning spaces. Second, results may
lead to real applications (e.g: reducing memory costs, computation times).

Learning spaces in theory (a few)

I We give two possible definitions, see [4, 3]. They settle the more used dual
but equivalent structure to learning spaces. Let Q be a finite set
representing items, F ,G ⊆ Q, a, b ∈ Q. A learning space is

(i) an anti-exchange closure space: a pair (Q, φ) where φ : 2Q 7→ 2Q is an
operator satisfying
. F ⊆ φ(G)⇐⇒ φ(F ) ⊆ φ(G), (closure)
. ∀a 6= b s.t a, b /∈ φ(F ), it holds a ∈ φ(F ∪ {b}) =⇒ b /∈ φ(F ∪ {a})

(anti-exchange), see Figure 1
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Figure 1:On this line 3 ∈ [1, 2] (a) but 2 /∈ [1, 3] (b): they cannot be exchanged.

(ii) a convex geometry (see Figure 2) which is a pair (Q,F), where F ⊆ 2Q

(Q ∈ F) and
. F ,G ∈ F =⇒ F ∩ G ∈ F, (∩-stability)
. for F ⊂ Q, F ∈ F, ∃q ∈ Q \ F s.t F ∪ {q} ∈ F. (augmentation)

I Under inclusion order, a ∩-stable set family is a lattice.
I There is a one-to-one correspondence between (Q, φ) and (Q,F).
I F is closed or convex if F = φ(F ) (equivalently F ∈ F).
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Figure 2:Illustration of convex geometry properties on Q = {1, 2, 3} through lattices of closed

sets: in (a) 13 ∩ 23 is missing, in (b) 1 cannot be augmented. (c) is the geometry associated

to convex sets of the line in Figure 1 (sets are ordered by inclusion and a sequence such as 123

is a shortcut for {1, 2, 3}).

Ongoing topic: representation problem

Focus on the translation between representations. (Q,F) is a learning
space.

I Two widely used representations ([1]):
. a characteristic subset M of F from which we can reconstruct F,
. a set Σ of implications A→ B meaning “if a student fails A, he/she fails

B too” (A,B ⊆ Q).
I Existing results:
. M and Σ uniquely define a learning space [5],
. translation from one to another has unknown complexity [5],
. existing algorithms for subclasses of closure systems [1, 2].

I Our ideas: algorithms for a subclass of convex geometries with an acyclicity
constraint. Main tools are lattices, maximum independent sets of an
hypergraph.

Example of translation
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Figure 3:The lattice of (a) can be both represented by the implications {12→ 4, 1→ 3} in

(c) and by the characteristic sets of (b) ordered by ⊇. These sets are also highlighted in (a)

along with their relationship.

We want to switch between (b) and (c) in Figure 3. For instance with 4:
I From (b) to (c): minimum set covering 4 in (b) is {234, 134} associated to
{1, 2} so we derive 12→ 4 in (c) (the covering is denoted by highlighted
arcs).

I From (c) to (b): maximum sets (circled) not implying 4 in (c) are 13 and
23, they do not fire the implication 12→ 4. Hence, they appear in (b) and
are attached to 4.

Conclusion

I Learning spaces model knowledge of a particular topic through particular
assumptions. They help to assess skills of students and point out what they
should learn next.

I This theory wishes to use new technologies to improve educational systems.
As such, our research is dedicated to representation and modification in
view of real life applications such as ALEKS in USA or within the ProFan
project in France.

I Representation problem has unknown tractability and put the light on the
study of subclasses of learning spaces.
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