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Introduction

I For connected vehicles to have a significant effect on road safety, it is
required that they can be accurately geo-positioned within a common frame.

I While GNSS receivers lack of precision, another strategy consists in using
visual sensors, and matching images over a map of accurately positioned
landmarks.

I Major actors in the field have tried building maps by using fleets of vehicles
equipped with high-quality sensors, but are now facing [1]:
. Strong logistical costs for maintaining the fleets.
. Slow rates for updating the maps.

I Instead, we intend to use production vehicles equipped with standard
sensors, and crowdsource their individual observations.

Methods

I First, the Perception block receives images from the camera, uses a
CNN-derived architecture to detect traffic signs and establish bounding
boxes [2], and outputs their descriptions.

I Next, the Vehicle and Feature Marks Geolocalization block receives
positions from the GPS receiver, and traffic signs descriptions as inputs.

The position and orientation of the camera is estimated directly from GPS
readings. As a traffic sign is detected, a projection line is established linking
its bounding box center to the camera center.

Traffic signs observations, consisting each of a description and a
geo-positioned projection line, are outputted.

I Cloud servers receive traffic signs observations from potentially several
vehicles as inputs, and match them with their corresponding traffic sign in
the map.

For each traffic sign, a new estimation X̂ of its geo-position is computed,
using all of its associated projection lines Z , and applying a least-squares
optimization:

X̂ = min
X

∑
dist(X ,Z) (1)

with dist(X ,Z) being the orthogonal distance between the geo-location
X and the projection line Z .

Conclusion

I Our simulation confirmed the hypothesis holding that the map accuracy
converges towards a null error, as more vehicles detect the traffic signs.

I Our real experiments, despite a limited number of passings, could show a
better performance in average than single-passing measurements.

I Future works include:
. The implementation of deviations calculations for the regular optimization

applied by the Landmarks Geolocalization block.
. The extension of our solution to other types of landmarks, such as road

markings or buildings.
. The dynamic management of the map’s landmarks.

Simulation Results

I A 2D simulation of our solution was implemented, in which a traffic sign
was defined along a straight road, and vehicles trajectories were computed
for several passings.

I Random, white noises of amplitude 5 m in position and 0.35 rd in
orientation were applied around true vehicles trajectories to generate
outputs from the GPS receiver.

I Random, white noises of amplitude 5 pixels were applied around true
bounding box centers to generate outputs from the Perception block.

I At each passing, a simplified optimization based on the yaw angles of
projection lines was applied by the Landmarks Geolocalization block,
enabling to compute associated deviations [3].
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Simulation Results - Errors for single-passing measurements (blue) and for estimations of our
approach (red) are shown, as well as the groundtruth (yellow). Deviations related to
estimations of our approach are depicted as [−2δ; +2δ] ranges.

Early Results

I A field-experiment was performed, in which a vehicle equipped with a
standard GPS receiver and a mono-visual camera was driven for 4 hours on
a 7 km loop, enabling to collect data for 10 passings along the loop.

I The geo-positions of 10 traffic signs were measured with an RTK-GPS
receiver, constituting a groundtruth to compare our results with.

I At the end of each passing, the regular optimization was applied by the
Landmarks Geolocalization block to estimate the geo-positions of all traffic
signs:
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Real Results - Distance errors for single-passing measurements (blue) and for estimations of
our approach (red) are shown.
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