UNIVERSITÉ Clermont Auvergne

> **Ecole doctorale Sciences Pour** l'Ingénieur

Study Masoumeh Nedaei¹, Pascal Biwole¹, Eric Dekneuvel², Gilles Jacquemod² ¹Institut Pascal, UMR 6602 UCA/CNRS/SIGMA Clermont ²Nice Sophia Antipolis University, Polytech Lab

Introduction

Recently, much progress has been made to bring 3D-PTV outside the laboratory to apply in real-world settings; however, there are many challenges yet to be overcome. The limited measuring volume of the 3D-PTV system is one important challenge, which needs to be extended to cover all the measuring volume [1]. In buildings and in large areas such as conference halls, clean rooms, inside the plane cabin, large-scale 3D-PTV could play a significant role in order to predict the trajectory and velocity of the air and airborne pollutants.

 \succ Transforming camera i coordinates system XX_C into the calibration target coordinate system XX:

- ➤ Why large scale PTV is crucial?
- Energy: saving energy
- 2. Environmental efficiency: thermal comfort, predicting airborne pollutants

Inside a plane cabin

Methods

- > Two 3D-PTV systems are being considered.
- Each system is composed of at least 3 cameras
- \succ The cameras should be time synchronous

Conference hall

Inside the home

- $XX_{Ci}^{n} = R_i^{n} XX^n + T_i^{n}$
- \succ If camera *i* of system *n* sees the calibration target of system *m*, then the relationship between XX_{Ci} ^{*n*} and XX^{*m*} can be written as: $XX_{ci}^{n} = R_{i}^{m} XX^{m} + T_{i}^{m}$
- \succ The relationship between XX^m and XX^n can be deduced as: $XX^{n} = [R_{i}^{n}]^{-1}[R_{i}^{m}.XX^{m} + T_{i}^{m} - T_{i}^{n}]$

A non-zero intersection in the 3D fields observed by the two adjacent 3D-PTV systems should be assumed to establish a link between the trajectories.

Two 3D coordinates of the two 3D-PTV systems are considered to be "similar", meaning that they correspond to the same particle, if the Euclidean distance between the 3D coordinates, noted below as A and *B*, is lower or equal than a threshold value *s*:

$$A - B\|_{2} = \sqrt{(x_{A} - x_{B})^{2} + (y_{A} - y_{B})^{2} + (z_{A} - z_{B})^{2}} \le s$$

Schematic representation of the experimental setup

The main procedures performed are as follows:

- > Multiple Camera Calibration: separately calculating intrinsic and extrinsic parameters using the pinhole camera model [2]
- > The calibration method proposed by Zhang [3] and implemented in Matlab by Bouguet [4] in a Camera Calibration Toolbox.

s can be also specified through a physical parameter, such as the average particle diameter or according to the experiment accuracy.

 \succ If the similarity criterion is valid for at least three consecutive instants, then the algorithm proceeds to link the trajectories related to those particles, $XX^{(1)}$ and $XX^{(2)}$. The algorithm, therefore, performs a comparison of the 3D coordinates particle by particle and at each time step.

	XX ⁽¹⁾ '	XX ⁽²⁾ '
t_1	OK	-
t ₂	OK	-
t ₃	OK	-
t ₄	$OK \approx$	$\approx OK$
t ₅	$OK \approx$	$\approx \mathrm{OK}$
t ₆	$OK \approx$	$\approx OK$
t7	-	OK
t ₈	-	OK
t9	-	OK

Conclusions and Future Studies

- \succ A method is proposed by using multiple 3D-PTV systems applicable for large enclosures such as conference rooms. Several 3D-PTV systems located next to each other are utilized to cover the entire volume measured.
- > The calibration of the cameras is described to define a common 3D coordinate system for the particle trajectories.
- \succ An algorithm for linking the particle trajectories is developed based on a similarity criterion.

Calibration toolbox Pinhole camera model \blacktriangleright At least one camera should have a view over the calibration target of the other system.

- > The performance of this algorithm will be investigated using the experimental data of two 3D-PTV systems.
- > In order to reduce the computational time, a parallelized programming method will be utilized by the aid of FPGAs as a future study.

- 1. Biwole, P.H., Yan, W., Zhang, Y. and Roux, J.J., 2009. A complete 3D particle tracking algorithm and its applications to the indoor airflow study. Measurement *Science and Technology*, *20*(11), p.115403.
- 2. Heikkila, J. and Silven, O., 1997, June. A four-step camera calibration procedure with implicit image correction. In cvpr (Vol. 97, p. 1106).
- 3. Zhang, Z., 1999, September. Flexible camera calibration by viewing a plane from unknown orientations. In *Iccv* (Vol. 99, pp. 666-673).
- 4. Bouguet, J.Y., 2004. Camera calibration toolbox for Matlab. http://www. vision. caltech. edu/bouguetj/calib_doc/index. html.