oA Deep Learning For Fraud Detection
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ICPR Fraud Detection Contest Finetune Deep Learning Models

> ldentify which receipt is frauded. AlexNet (2012)
» Small dataset of 600 Images (470 genuine, 130 frauded). ity Lenvl CAnyE conys Cofivd Convs  FC6 FC7 FC8

13x 13 X384 13x 13 x 384 13% 13 X 256

» We used linear methods for data augmentation (rotation,flip).
» Detecting important information using Image Manipulation. 227% 227 X 3

» Feed those important information to a Deep Learning Network. Resnet152 (2015)
» Train the network to detect if the image is tampered or genuine.

» Dividing the image into smaller frames to increase the dataset. I
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We first compare the reference pixel (here the pixel with the value 70) to each
of his neighboor, if the neighboor is greater we replace it by a 0 and if it is
lower or equal we replace it by a 1. We use P for the ponderation operator, to

transform the matrix into a binary number, (11011001), = 217. All learning were done with a graphic card Titan X Pascal on the
framework Tensorflow, 24 hours were needed to fully train our best

Discrete Wavelet Transform network.

Network  Combined Methods Accuracy
AlexNet RGB 62%
The transformation replaces the sequence with its pairwise average x,_1; AlexNet ELA+PCA+LBP 657
and difference d,,_1 ; defined as: AlexNet  ELA+Wavelet+LBP 4%
AlexNet  ELA-+Wavelet+GrayScale 76%
Xp_1.i = X"»2"+2X"a2i+1, dp_1; = Xn,2i_2Xn,2i+1 AlexNet  ELA+Wavelet+GrayScale+Fraud Creation 85%
ResNet152 RGB 63%
We extend the one-dimensional Wavelet transform in two dimensions. ResNet152 ELA+PCA-+LBP 65%
ResNet152 ELA-+Wavelet+LBP 75%
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Xn,i = {70 56 61 49} — {Xn_l,,', d — ln,,'} = {63 b5 7 6}

We first apply one dimensional Haar-wavelet in each row and then on each Conclusion

column.
» Achieved more than 90 % accuracy.

Error Level Analysis » Easily adaptable to any types of images (bills, document).

» Creating different types of image manipulation might improve our model's

o find the tampered parts, we first apply JPEG compression with the reliability.
quality loss of 90%, then we calculate the difference between the first
image and the compressed one.
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Figure 1:Left: Frauded image. Right: Manipulated areas found withh’ELA

This technique is based on the idea that tampered areas can act differently
to JPEG compression than the rest of the image.




