

Design and optimization of a robot for AI/CFRP/Ti orbital stacking drilling

Jean-Baptiste GUYON

supervised by Hélène CHANAL, Benoît BLAYSAT & Benjamin BOUDON

Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal

Introduction

- ► My thesis topic is part of the project *European and Chinese Platform for Stacked Aero-Structure Drilling Process and Equipment* (or ECSASDPE) whose final objective is the creation of a robot dedicated to high quality AI/CFRP/Ti stacking drilling on complete aeronautical structural elements such as a wing or a fuselage section.
- ► The machine thus designed will improve the quality of the holes, the speed at which these holes are drilled and reduce inconvenience for technicians.

Context

- Machined materials: A stack of glued Aluminium, Carbon Fiber Resin Polymer and Titanium:
 - ▶ Aluminium: easily machinable material;
 - ▶ Carbon Fiber Resin Polymer: easily machinable but also easily damaged;
 - ▶ Titanium: hard material and bad temperature dissipator. [1]
- → Best way to machin is Orbital Drilling

Figure 1:AI/CFRP/Ti Stack

workpiece

2 main process design:

- Conventional Orbital Drilling (COD): Rotation & revolution of the tool.
- ▶ Tilted Orbital Drilling (TOD): Rotation, revolution & tilting of the tool. [2]
- → Specific cinematic for Orbital Drilling

- → Low effort for Orbital Drilling

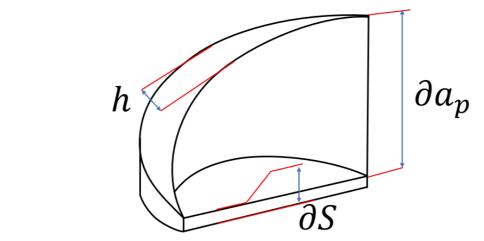


Figure 2:Orbital drilling concept

Figure 3:Chip definition

- Drilled holes quality:
 - ▶ Geometry of the hole.[4]
- ▶ Roughness of the hole.[4]
- ▶ Burr at interfaces.[4]
- No ruins of the CFRP.[5]
- → Several quality items to check

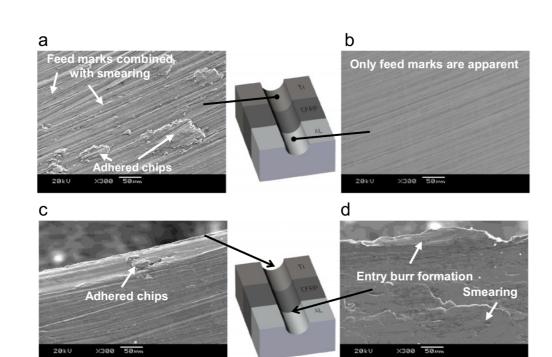


Figure 4:Hole micrography

Methodology

- 1. Modelise the Tripteor X7 in explicit formulation & identificate structure parameters.
- 2. Apply the model to other Exechon type machines.
- 3. Determine an optimised architecture for Parallel Kinematic Machine to do orbital drilling.

Parallel Kinematics Machine (PKM)

- ► Presentations of PKM [6] :
 - ▶ Advantages of PKM: stiffness & high deplacement rate.
 - Difficulties of PKM: complex command & low deplacement range.
- ► Tripteor X7 specifications (overconstrained PKM):
 - ▶ 3 controlled linear parameters
 - ▶ 2 controled angular parameters
 - ▶ 6 end-effector position parameters
- ▶ 13 intermediary angular parameters

Tripteor X7

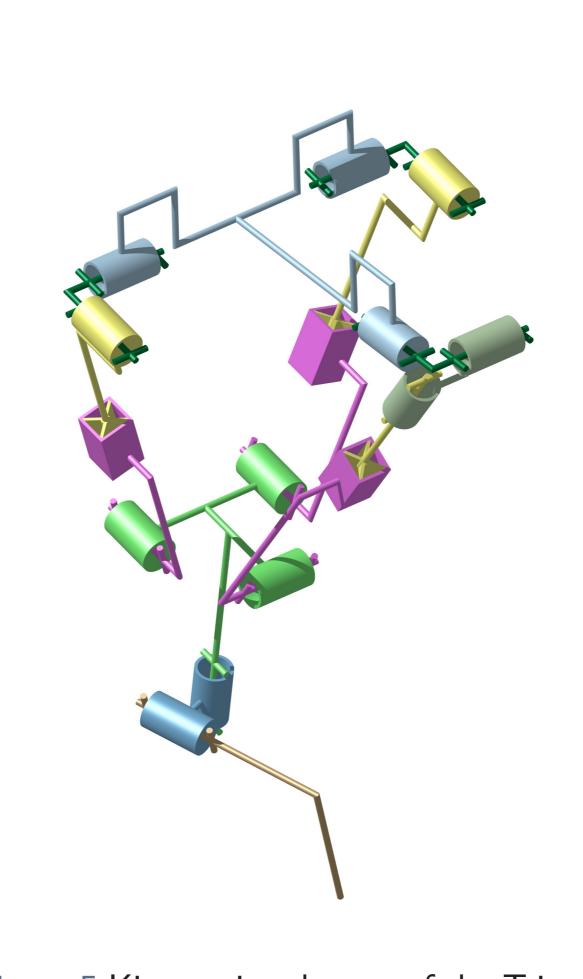


Figure 6: Worplace of the Tripteor X7

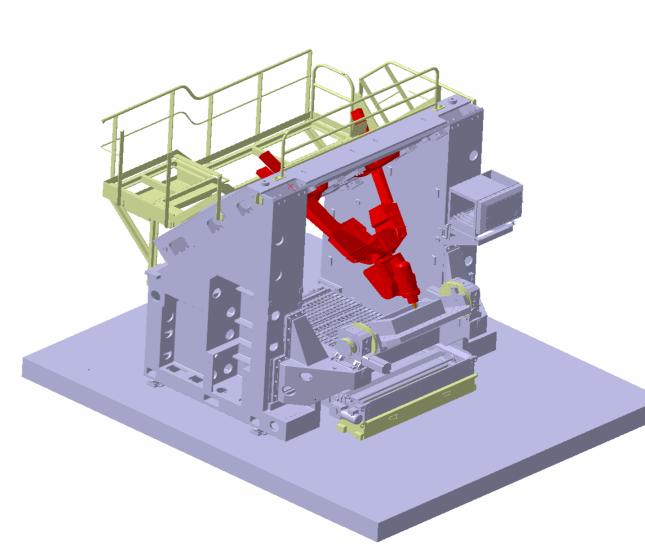


Figure 5:Kinematic schemes of the Tripteor X7

Figure 7:CAD of the Tripteor X7

Parallel Kinematics Machine (suite)

► Vector and angular closure:

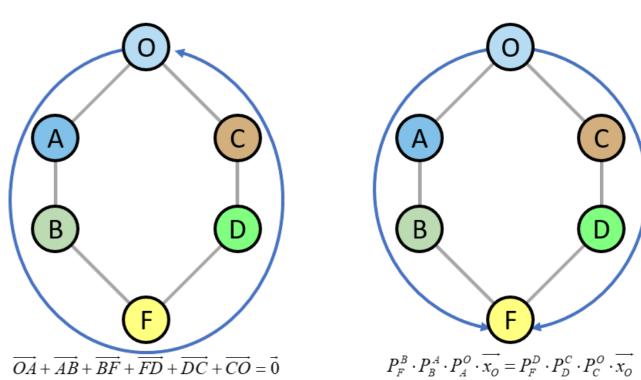


Figure 8:closure method

- ► 2-time PKM definition:
 - 1. Parallel structure closure \Rightarrow Constraint equation:

 $\overline{X}_{platform} = f(Q_i) \ i \in \{1, 2, 3\}$

2. Full structure closure \Rightarrow Constraint equation: $\overrightarrow{X}_{tool} = f(Q_i) \ i \in \{1, 2, 3, 4, 5\}$

 \hookrightarrow Total of 12 3D equations.

Conclusion

At the moment, the explicit formulation of the explicit geometrical modelisation is about to be completed.

References

- [1] Nuno Filipe Morais Neto.
 - Orbital drilling of titanium alloys for aeronautics applications. experimental studies. 2017.
- [2] Qiang Wang, Yongbo Wu, Teruo Bitou, Mitsuyoshi Nomura, and Tatsuya Fujii.

 Proposal of a tilted helical milling technique for high quality hole drilling of cfrp: kinetic analysis of hole formation and material removal.
 - The International Journal of Advanced Manufacturing Technology, Sep 2017.
- [3] Haiyan Wang, Xuda Qin, Chengzu Ren, and Qi Wang.
 Prediction of cutting forces in helical milling process.

 The International Journal of Advanced Manufacturing Technology, 58(9):849–859, Feb 2012.
- [4] I.S. Shyha, S.L. Soo, D.K. Aspinwall, S. Bradley, R. Perry, P. Harden, and S. Dawson. Hole quality assessment following drilling of metallic-composite stacks.

 International Journal of Machine Tools and Manufacture, 51(7):569 578, 2011.
- [5] E. Brinksmeier, S. Fangmann, and R. Rentsch. Drilling of composites and resulting surface integrity. CIRP Annals - Manufacturing Technology, 60(1):57 – 60, 2011.
- [6] M. Weck and D. Staimer.
 Parallel kinematic machine tools current state and future potentials.
 CIRP Annals, 51(2):671–683, 2002.