Improvement and automatization of an image analysis tool to characterize the plant 3D nucleus

DUBOS Tristan^{1,2}, MALGOUYRES Rémy², POULET Axel³, GONTHIER Céline¹, POUCHIN Pierre¹, PROBST Aline¹, TATOUT Christophe¹ and DESSET Sophie¹

¹ Université Clermont Auvergne, Laboratoire GReD, Clermont-Ferrand, France

² Université Clermont Auvergne, Laboratoire LIMOS, Aubière, France

³ Emory University, Department of Biostatistics and Bioinformatics, Atlanta, USA

I. Objective: study nuclear organization (nuclear morphology and chromatin organization) in 3D

Parameters to characterize a nucleus?

2D: only 1 chromocentre (red object) can be

3D: reveals a **second chromocentre** behind the first one,

Aim : implement a workflow to compute 3D morphometric from Plant nuclei

II. Method: Wide field images acquisition and general image process analyses through the Nucleus J plugin

NucleusJ is functional (see Poulet et al., Bioinformatics 2017, J. Cell Science 2017) but needs automated segmentation processes

III. Improvement of NucleusJ

A) Modified OSTU segmentation

Optimized Otsu threshold maximized sphericity

C) Application on nuclei

Modified Otsu

Slice 24

Slice 26

B) Gift wrapping segmentation

Implementation of Jarvis march algorithm

Nucleolus (no DNA = no staining) Boundaries: Irregularities due to poor DAPI staining

Nucleolus (hole) Indentations & irregularities at boundaries

Nucleolus is filled (no hole) Reduction of indentations & irregularities at boundaries BUT **Over estimation of the volume**

IV. Validation

A) Using polychrome beads $4\mu m Ø$

B) Using mutant with periphery marker (in progress)

SUN2-GFP marker : protein localized at the Nuclear periphery (nuclear envelope marker)

DAPI : DNA binding molecule

V- Conclusion & Perspectives

We select a set of segmentation methods to assess quantitative parameters to describe nuclear organization.

Future directions:

- Correction of the segmentation methods (theoretical objects, marked mutant ...)
- Use of other model species (ex: spermatozoid nucleus compaction)
- Exploration of new method to automatize chromocenters segmentation (3D watershed -> Deep learning, machine learning?)
- Adaptation to 3D DNA-FISH analyses

Institut national de la santé et de la recherche médicale

