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Introduction

What?
I A regularization approach, called weighted

ridge logistic.
I Two Bayesian approaches, called manifold

Laplace approximation (MLA) and manifold
expectation propagation (MEP).

Why?
I High dimensionality poses statistical

challenges and renders many traditional
classification algorithms impractical to use.

How?
I A modified version of ridge logistic, with the

advantage of reducing the search space of
regularization parameter, which is more
efficient for computational time.

I A novel approach having the advantage of
learning data into new feature space under
some constraints (reduce non-linearity,
increase separability) in a Bayesian context.

Discussion and conclusion

I The effectiveness of the proposed
approaches has been proved within an
application to image classification that
contains some defected boxes among correct
ones.

I From various conducted tests, we
demonstrated that the results are enhanced
by both proposed approaches regarding the
baseline approach (logistic regression).

I The proposed based on manifold Gaussian
process classifier achieve high accuracy.

I The MEP has more predictive power and
generalization capability than MLA.

I The difference between MEP and MLA is
caused almost exclusively by approximation
errors in MLA.

Perspectives

I Estimation of model’s hyper-parameters by
variational and Bayesian methods.

Regularization approach

I Summary: The idea consists of considering the weighted sum between the unstructed log-likelihood of
logistic regression and l2-norm of unknown parameters β.

I Details:
Formulation How to find the maximum likelihood estimate (MLE) ?

βλ,∗ = arg max
β

{
lλ(β) =

(1− λ)

2
l(β)−

λ

2
||β||22

}
; 0 < λ < 1

Description of data {X,Y} = {(xi, yi)}Ni=1, where yi ∈ {0, 1} and xi ∈ Rp

Variational methods: Newton/gradient

βk+1 ≈
(1− λ)

2
(−∇2lλ(βk))−1(∇2l(βk)βk +∇l(βk))

I Problems: dim(β) = p + 1 >> N =⇒ dimensionality reduction.
βλ,∗ can be a local maximum =⇒ Bayesian inference gives more candidates through the prior.

Bayesian approaches

I Summary: The idea is to learn the Gaussian processes classifier (GPc) in a feature space to get the
proposed manifold Gaussian processes classifier (MGPc)

I Details:
A MGPc G : H→ R is equivalent to a GPc f = G ◦M : Rp → R with a covariance function c̃ such
that c̃(x, x ′) = c(M(x),M(x ′)). M is a deterministic and parametrized function obtained by an
unsupervised way, that maps the input space Rp into the feature space H ⊆ Rm (m << p).
Formulation How to find an explicit form to the posterior proportionality ?

P(G|Z,Y) ∝ P(G|Z)×
N∏
i=1

P(yi|Gi) ; G = G(Z)

Description of data {Z = M(X),Y} = {(zi, yi)}Ni=1, where yi ∈ {−1, 1} and zi ∈ H
Approximation methods MLA & MEP

MLA: Employing a Gaussian approximation to the
true posterior from the second order Taylor
expansion around the MAP estimator.

MEP: Replacing the individual likelihoods by
unnormalized Gaussians and minimizing the
Kullback-Leiber divergence iteratively between the
true posterior and its approximation.

An illustration of key steps to classify a test input (y∗ = −1)
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Comment: Approximate predictor of class ”1”: π̄∗ = 0.41 for MLA & π̄∗ = 0.33 for MEP

Boxes with different representations

Non-defective (top) and defective (bottom)
boxes (original, gradient, binarization, Gabor)

Results: Logistic regression
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Error rates

features
gradientGaborbinarization

FP 20% 51% 53%
FN 27% 47% 43%
CE 25% 48% 45%

Results: Bayesian approaches
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Error rates

methodsMLA MEP

FP 11%8.5%
FN 19%10%
CE 17%9.5%

Results: Weighted ridge logistic
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Errors as a function of regularization parameters (FN=upper values, FP=lower values and
CE=values in the middle) obtained by: Newton (left) and gradient (middle). ROC curve (right)

Results: Figure
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ROC curves for Bayesian approaches: MLA (left) and MEP
(right)
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